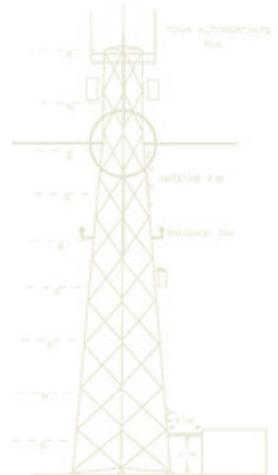


**ENGINEERING BRIEF REGARDING THE
APPLICATION FOR A NEW FM BROADCAST STATION
UNDERTAKING IN HALIFAX, NOVA SCOTIA**

CHXU-FM
(proposed)

CHANNEL 295 – 106.9 MHz CLASS A


Version 1.0

SUBMITTED ON BEHALF OF

UMCC HALIFAX GROUP

2510 St Matthias St,

Halifax, NS,
B3L 0A9

YRH

424 Guy Street
suite 102
Montreal (Qc)
Canada, H3J 1S6

 Prayers Connect
Mosques & Time Discovery

telephone:
514 934 3024

fax:
514 934 2245

June 2023
O/Ref.: P-2022289

web: www.YRH.com
e-mail: Telecom@YRH.com

TABLE OF CONTENT

	Page
A – SYSTEM DESCRIPTION - SUMMARY SHEET.....	I
B – SYSTEM COMPARAISON.....	ERROR! BOOKMARK NOT DEFINED.
C – SERVICE CONTOURS	II
1 INTRODUCTION.....	1
2 OBJECTIVE	1
3 ASSUMPTIONS AND SOURCES OF INFORMATION	2
4 LOCATION	2
5 CHANNEL SELECTION	3
5.1 Short spaced distance	3
5.2 Detail of CBC 430-FM - Truro, Short-Spaced with proposed CHXU-FM in Halifax.....	4
5.3 Detail of SHELBURNE 40 - Shelburne, Short-Spaced with proposed CHXU-FM in Halifax	5
6 DISTORSION ANALYSIS OF THE RADIATION PATTERNS OF AM STATIONS	6
7 INTERFERENCE AND INTERMODULATION ANALYSIS	6
7.1 Potential Harmonics Interference	6
7.2 Interference to TV channel 6	6
7.3 Third and fourth adjacent channels	6
7.4 Intermodulation	7
8 EQUIPMENT	8
8.1 Transmitter	8
8.2 Antenna	8
8.3 Transmission Line	8
8.4 Miscellaneous losses.....	8
9 SERVICE CONTOUR CALCULATIONS	9
9.1 Calculation of operating parameters	9
9.2 Terrain profile parameters.....	9
10 HIGH FIELD STRENGTH CONTOUR.....	11
11 POPULATION ESTIMATES.....	11
12 INTERFERENCE CAUSED TO LOW POWER AND VERY LOW POWER STATIONS.....	11
13 RF EXPOSURE ANALYSIS.....	12
14 BROADCASTER'S RESPONSIBILITIES	13
15 EXPIRATION DATE	13
16 QUALIFICATION AND SIGNATURE.....	13

Map 1 Site Location; High Field Strength Contour

Map 2 Service Contours

Map 3 Interference with Co-channel Short Spaced Stations

Map 4 Interference with 1st adjacent channel, Short Spaced Stations

Map 5 Service Contours and Realistic Coverage

Forms ISDE/ISED Canada

A – SYSTEM DESCRIPTION - SUMMARY SHEET

Applicant	UMCC HALIFAX GROUP
Address	2510 St Matthias St, Halifax, NS, B3L 0A9
Location	Halifax
Call Sign	CHXU-FM (proposed)
Channel	295
Class	A
Frequency	106.9 MHz
Site Coordinates: (NAD 83)	Latitude : 44° 39' 02" N Longitude : 63° 35' 51" W
Transmitter Power	1473 W
Feed System Efficiency	0.66 dB
Antenna Power Gain	Max : 5 dBd Ave : 3.11 dBd
Antenna polarisation	Vertical
Effective Radiated Power (ERP)	Max : 4000 W Ave : 2587 W
Effective Height Above Average Terrain (EHAAT)	44.7 m
Overall Height of Tower Structure above Ground Level	23.5 m
Radiating Centre Above Mean Sea Level	78.0 m
Ground Level Above Mean Sea Level	56.0 m
Modes	Stereo (), Unattended

B – SERVICE CONTOURS

Call Sign	CHXU-FM (proposed)
Location	Halifax
Site Coordinates: (NAD 83)	Latitude : 44° 39' 02" N Longitude : 63° 35' 51" W
ERP (Effective Radiated Power)	Max : 4000 W Ave : 2587 W
Channel	295
Class	A
Frequency	106.9 MHz

Proposed service contours:

Radial No.	Azimuth (°)	HAAT (m)	ERP (Watts)	Distance to 3 mV/m Contour (km)	Distance to 0.5 mV/m Contour (km)
1	0	55.5	2898	10.2	24.5
2	45	53.2	1127	7.9	19.1
3	90	56.6	895	7.7	18.6
4	135	55.1	1127	8.0	19.4
5	180	42.0	2898	8.8	21.3
6	225	28.6*	3864	8.2	19.9
7	270	14.9*	4000	8.2	20.0
8	315	52.1	3864	10.6	25.4

EHAAT: 44.7 m (based upon 8 standard radials)

(*) an HAAT of 30 m value was considerate for calculation purposes

**ENGINEERING BRIEF REGARDING THE
APPLICATION FOR A NEW FM BROADCAST STATION
UNDERTAKING IN HALIFAX, NOVA SCOTIA**

CHXU-FM
(proposed)

CHANNEL 295 – 106.9 MHz

Version 1.0

1 INTRODUCTION

The applicant has retained the services of *YRH Inc.* , Broadcast and Telecommunications Consultants, to prepare an engineering brief in support of the application for modification of operational parameters for the broadcast station VF3002 undertaking in Halifax, Nova Scotia.

This brief is presented in conformance with the Application Procedures and Rules for FM Broadcasting Undertakings Part III (BPR 3), dated February 2016 and published by Innovation, Science and Economic Development Canada (ISED-ISDE).

2 OBJECTIVE

In order to offer quality FM broadcasting services to the population of Halifax and its surrounding municipalities in Nova Scotia, the applicant requests permission to operate from the proposed location a new FM broadcasting transmitting station on channel 295 (at a frequency band of 106.9 MHz)

To achieve this, it is proposed the installation of a new antenna and a new transmitter on existing V003 LP site.

The proposed parameters of 4000 W maximal ERP and an EHAAT of 44.7 m are within the class A equivalent parameters.

Details of the proposed antenna location are provided in Transport Canada form 26 0427. A copy of this form is included at the end of this brief. Map 1 shows the site location on a topographical map of 1:50000 scale.

The service contours considered are of 3.0 mV/m and 0.5 mV/m, and are calculated using the curves F(50,50), as stated in Section C-3 of BPR Part III. These contours are shown on Map 2 of this technical brief. We can predict satisfactory service to the target centre of Halifax and its surroundings according to the article C-1.1.18 of the BPR 3.

The programming feed as well as the remote control and monitoring of the equipment will be subject to a study following approval of this project.

Technical Brief_New-FM_Halifax		Project : P-2022289
Version 1.0	1	June 2023

3 ASSUMPTIONS AND SOURCES OF INFORMATION

This Engineering Brief complies with the rules for FM Broadcast Undertakings stated in the ISDE/ISED Canada Broadcast Procedures and Rules, Parts 1 and 3, issued and maintained by ISDE/ISED Canada. Topographic data were obtained from digital elevation database, DTED-CDED, available on Canadian web site:

<https://www.nrcan.gc.ca/science-and-data/science-and-research/earth-sciences/geography/topographic-information/10785>

The reference system is NAD 83.

The table of allotments and assignments for FM broadcasting channels in Canada used, was revised in June 2023, and is available at the following Internet address:

http://www.ic.gc.ca/engineering/BC_DBF_FILES/baserad.zip

All antennas gains are expressed in dBd (referenced to a dipole).

4 LOCATION

It is proposed to use a building rooftop, the existing location of V003 in Halifax. There will be no significant change to the height of the structure (approximative 3 m, less 25%). Therefore, the applicant is exempt from the public consultation procedure and is not required to inform the local land use authority for the installation of this new antenna. This exemption is detailed in the CPC-2-0-03 published by Industry Canada. However, it is important to note that the exemption doesn't exclude the applicant's responsibility with respect to the following:

- Meeting the requirements detailed in Safety Code 6;
- RF immunity as detailed by EMCAB-2;
- Notification to short-spaced broadcasting stations;
- Environmental considerations;
- Transport/NAV Canada requirements.

Finally, the location choice will be conditional of project acceptance by the CRTC and ISED/ISDE.

5 CHANNEL SELECTION

An analysis was performed to determine the distances separating the proposed site and other allotments and assignments operating on co-channel and adjacent frequencies in order to find the optimal available frequencies. Consequently, channel 295, corresponding to the FM frequency of 106.9 MHz, is proposed.

5.1 Short spaced distance

Based on the selected channel and class (295 A) there are two (2) short-spaced allotments that do not comply with ISED-ISDE Canada's minimum required spacing rules.

Table 1 – Short spaced station/allotment list

Latitude :			44° 39' 02" N					
Longitude :			63° 35' 51" W					
Channel 295 cross-checking:			From 201 to 300					
Survey radius :			350 km					
Channel	Lim	Station	Station Location	Class	Status	Azimuth (deg)	Distance (km)	Required Distance (km)
296		CBC 430-FM	Truro	B	AL	18	83.7	137.0
295	#	SHELBURNE 40	Shelburne	B	AL	235	169.5	209.0

The interference analyses for each of these allotments are presented in the following pages.

5.2 Detail of CBC 430-FM - Truro, Short-Spaced with proposed CHXU-FM in Halifax

The class B allotment CBC 430-FM reserved for Truro, is 83.7 km from the proposed station. The proposed CHXU-FM is in a short space situation with the CBC 430-FM since the separation distance between them is less than the required 137 km. This minimal distance is specified in BPR part 3 for a class B and A stations operating on channels separated by 200 kHz. The following calculations show the potential interference between the two stations.

Potential of interference on CBC 430-FM

Maximum permitted interfering contour on CBC 430-FM 54 dB μ V/m contour (1st adjacent) 54 dB μ V/m -6 dB = 48 dB μ V/m

Distance to the interference free contour of CBC 430-FM (B class allotment) towards new FM at 198° , 50.0 km

Distance to the 54 dB μ V/m contour of CBC 430-FM using maximal parameters towards proposed FM using F(50,50) curves 65.0 km

Distance from proposed CHXU-FM station to its 48 dB μ V/m interfering contour calculated at 18° (2069 W and 30 m HAAT) using F(50,10) curves 25.6 km

Margin between interference free contour of CBC 430-FM and the 48 dB μ V/m interfering contour of the proposed station (83.7 – 50.0 – 25.6 = -6.2 km) 8.1 km

Margin between the 54 dB μ V/m contour of CBC 430-FM at its maximal parameters and the 48 dB μ V/m interfering contour of the proposed station (83.7 – 65 – 25.6 = -6.9 km) -6.9 km

Potential interference to proposed CHXU-FM station

Maximum permitted interfering contour on proposed FM 54 dB μ V/m contour (1st adjacent) 54 dB μ V/m -6 dB = 48 dB μ V/m

Distance from proposed CHXU-FM station to its 54 dB μ V/m coverage contour calculated at 18° (2069 W and 30 m HAAT) using F(50,50) curves 17.0 km

Distance to CBC 430-FM 48 dB μ V/m maximal class B interfering contour at 198° calculated with F(50,10) curves 99.2 km

Margin between the proposed 54 dB μ V/m contour and the 48 dB μ V/m interfering contour of CBC 430-FM station at its maximal parameters (83.7 – 17 – 99.2 = -32.5 km) -32.5 km

The analysis shows that the maximum class B contour of the CBC 430-FM allotment could receive interference from the proposed station. The interference zone is identified on the maps. No interference is calculated within the protected contour of the CBC allotment.

The proposed CHXU-FM station will receive interference from a station operating from Truro at maximum class B parameters according to this site to site in line calculations. The interference zone is identified on the maps.

This interference case is shown on Map 2 and Map 4.

5.3 Detail of SHELBOURNE 40 - Shelburne, Short-Spaced with proposed CHXU-FM in Halifax

The class B allotment SHELBOURNE 40 reserved for Shelburne, is 169.5 km from the proposed station. Proposed CHXU-FM is in a short space situation with the SHELBOURNE 40 since the separation distance between them is less than the required 209 km. This minimal distance is specified in BPR part 3 for a class B and A stations operating on the same channel. The following calculations show the potential interference between the two stations.

Potential of interference on SHELBOURNE 40

Maximum permitted interfering contour on SHELBOURNE 40 54 dB μ V/m contour (co-channel) 54 dB μ V/m -20 dB = 34 dB μ V/m

Distance to the interference free contour of SHELBOURNE 40 (B class allotment) towards proposed FM at 55° 50 km

Distance to the 54 dB μ V/m contour of SHELBOURNE 40 using its maximal parameters towards Proposed FM using F(50,50) curves 65.0 km

Distance from proposed Proposed FM station to its 34 dB μ V/m interfering contour calculated at 235° (3954 W and 30 m HAAT) using F(50,10) curves 89.1 km

Margin between the 54 dB μ V/m contour of SHELBOURNE 40 at its maximal parameters and the 34 dB μ V/m interfering contour of the proposed station (169.5 – 65 – 89.1 = 15.4 km) 15.4 km

Potential interference to proposed CHXU-FM station

Maximum permitted interfering contour on proposed Proposed FM 54 dB μ V/m contour (co-channel) 54 dB μ V/m -20 dB = 34 dB μ V/m

Distance from proposed CHXU-FM station to its 54 dB μ V/m coverage contour calculated at 235° (3954 W and 30 m HAAT) using F(50,50) curves 20.0 km

Distance to SHELBOURNE 40 34 dB μ V/m maximal class B interfering contour at 55° calculated with F(50,10) curves 171.6 km

Margin between the proposed 54 dB μ V/m contour and the 34 dB μ V/m interfering contour of SHELBOURNE 40 station at its maximal parameters (169.5 – 20 – 171.6 = -22.1 km) -22.1 km

The analysis shows that maximum class B contour of SHELBOURNE 40 allotment will not be affected by interference from the proposed station.

The proposed CHXU-FM station will receive interference from a station operating from Shelburne maximum class B parameters according to this site to site in line calculations. The interference zone is identified on the maps.

This interference case is shown on Map 2 and Map 3.

6 DISTORSION ANALYSIS OF THE RADIATION PATTERNS OF AM STATIONS

There are no operational AM stations within 2 km of the proposed station. Therefore, no further analysis is necessary.

7 INTERFERENCE AND INTERMODULATION ANALYSIS

7.1 Potential Harmonics Interference

Channel: f_1 : 106.9 MHz

Harmonics: $2f_1$: 213.8 MHz

The second harmonic of the proposed station is included within the television channel VHF 13 (210 - 216 MHz).

There are no TV stations operating on channel 13 within 100 km of the proposed station. Therefore, we do not anticipate any problem of this type arising from the operation of the proposed station.

7.2 Interference to TV channel 6

The proposed station will transmit on channel 295, which is outside the band of frequencies relative to TV broadcasting channels 201-220.

Therefore, no interference of this kind is expected.

7.3 Third and fourth adjacent channels

The actual channel 298 used by applicant on LP class it finds to be in a third adjacent.

However, it is proposed a channel change for this location.

Channel	Station	Station Location	Class	Status	Azimuth (deg)	Distance (km)
298	VF3002	Halifax	LP	OP	0	0.0

There are no other third or fourth adjacent channel in a short space situation to the proposed station; therefore, no further analysis is necessary.

7.4 Intermodulation

Table below shows the stations for which frequencies are in use or potentially in use and where their protected 54 dB μ V/m overlaps the 115 dB μ V/m contour of the proposed station.

Call Sign	Location	Channel	Class	Status	Azimuth (deg)	Distance (km)
CHXU-FM	Halifax	295	A	PC	270	0.0
CKRH-FM	Halifax	253	A	TO	56	2.9
CIRP-FM	Spryfield	234	LP	OP	199	3.9
CKDU-FM	Halifax	201	A	OP	270	4.7
CBAF-FM-5	Halifax	222	C	OP	270	4.7
CBH-FM	Halifax	274	C	OP	270	4.7
CHFX-FM	Halifax	270	C	OP	270	4.7
CFLT-FM	Dartmouth	225	C1	OP	270	4.7
CBAX-FM	Halifax	218	C1	OP	270	4.7
CHNS-FM	Halifax	210	C1	OP	270	4.7
CJNI-FM	Halifax	239	C1	OP	270	4.7
CKRH-FM	Halifax	253	B1	OP	270	4.7
CHHU-FM	Halifax	256	A	OP	270	4.7
CBHA-FM	Halifax	213	C	OP	270	4.7
CFEP-FM	Halifax	290	A	OP	270	4.7
CKHY-FM	Halifax	286	C	OP	265	5.0
CKHZ-FM	Halifax	278	C	OP	265	5.0
CFRQ-FM	Dartmouth	282	C	OP	265	5.0
CKUL-FM	Halifax	243	C1	OP	265	5.0
CIOO-FM	Halifax	261	C	OP	265	5.0
CJCH-FM	Halifax	267	C1	OP	265	5.0
CJLU-FM	Dartmouth	230	A	OP	60	7.9

Intermodulation is expected to arise between the above-mentioned stations. The intermodulation analysis shows that there could be up to 669 second and third order possible combinations using the stations listed in the overhead table including the new proposed channel. As these stations are all within a low order of magnitude in power, it is not anticipated that there will be any prejudicial intermodulation products generated. However, if problems arise, the applicant will take appropriate measures to remedy the situation at the applicants own expense.

We also note that none of these stations are in proximity to the proposed transmission site.

8 EQUIPMENT

Figure 6 shows the block diagram of the equipment proposed used for this project. A complete list of the equipment will be made available at the time of the certification procedure prior to on-air operation.

8.1 Transmitter

MANUFACTURER: NAUTEL (or equivalent)
 MODEL: VX1.5 (or equivalent)
 NOMINAL POWER: 1500 W
 OPERATING POWER: 1473 W

8.2 Antenna

MANUFACTURER: Power Antenna (or equivalent)
 TYPE: vertical dipole (or equivalent)
 MODEL NUMBER: PAFM-VDP (or equivalent)
 NUMBER OF BAYS: 2 bays
 PATTERN: directional
 GAIN (max): 5 dBd
 GAIN (ave): 3.11 dBd
 POLARISATION: Vertical

8.3 Transmission Line

MANUFACTURER: CommScope (Andrew) (or equivalent)
 MODEL: AVA5-50 (7/8" air dielectric)
 LENGTH: 30 m
 ATTENUATION: 1.202 dB /100m
 LOSS: 0.36 dB

8.4 Miscellaneous losses

Other material used between the transmitter and the antenna (transmission line inside the building, elbows, connectors, Wattmeter line section, etc.) will attenuate the signal. This insertion loss is estimated at 0.3 dB.

9 SERVICE CONTOUR CALCULATIONS

9.1 Calculation of operating parameters

Operating Transmitter Power = 1473 W \approx 31.68 dBW

$$\begin{aligned}
 \text{ERP (max.)} &= \text{Operating Transmitter Power} - \text{Transmission Loss} + \text{Miscellaneous losses} + \text{Antenna Gain (max)} \\
 &= 31.7 \text{ dBW} - 0.36 \text{ dB} - 0.3 \text{ dB} + 5 \text{ dBd} \\
 &= 36.02 \text{ dBW} \approx 4000 \text{ W}
 \end{aligned}$$

$$\begin{aligned}
 \text{ERP (ave.)} &= \text{Operating Transmitter Power} - \text{Transmission Loss} + \text{Miscellaneous losses} + \text{Antenna Gain (ave.)} \\
 &= 31.7 \text{ dBW} - 0.36 \text{ dB} - 0.3 \text{ dB} + 3.11 \text{ dBd} \\
 &= 34.13 \text{ dBW} \approx 2587 \text{ W}
 \end{aligned}$$

9.2 Terrain profile parameters

The following values were used for different calculations:

- Radiation Center Height: 22.0 m AGL;
- Ground: 56.0 m ASL;
- AET: 33.3 m (calculated with 8 azimuths);
- EHAAT result: 44.7 m (calculated with 8 azimuths);
- The profiles of the 8 standard radials are shown on Figures 2, 3, 4 and 5;
- FCC(50,50) and FCC(50,10) curves for interference calculations.

Table 2 – Service Contours

Radial No.	Azimuth (°)	HAAT (m)	ERP (Watts)	Distance to 3 mV/m Contour (km)	Distance to 0.5 mV/m Contour (km)
1	0	55.5	2898	10.2	24.5
2	10	38.8	2410	8.1	19.7
3	20	38.7	1982	7.7	18.7
4	30	37.0	1574	7.1	17.4
5	40	42.6	1236	7.2	17.5
6	45	53.2	1127	7.9	19.1
7	50	52.6	1052	7.7	18.7
8	60	53.1	971	7.6	18.4
9	70	50.4	916	7.2	17.7
10	80	54.8	895	7.5	18.3
11	90	56.6	895	7.7	18.6
12	100	57.9	895	7.8	18.9
13	110	56.7	916	7.7	18.8
14	120	57.6	971	7.9	19.2
15	130	56.0	1052	7.9	19.3
16	135	55.1	1127	8.0	19.4
17	140	50.8	1236	7.9	19.1
18	150	50.0	1574	8.3	20.1
19	160	43.2	1982	8.1	19.7
20	170	42.1	2410	8.5	20.4
21	180	42.0	2898	8.8	21.3
22	190	42.6	3266	9.2	22.1
23	200	34.6	3524	8.5	20.6
24	210	27.6*	3690	8.1	19.6
25	220	26.5*	3820	8.1	19.8
26	225	28.6*	3864	8.2	19.9
27	230	29.4*	3909	8.2	19.9
28	240	28.2*	4000	8.2	20.0
29	250	24.7*	4000	8.2	20.0
30	260	14.4*	4000	8.2	20.0
31	270	14.9*	4000	8.2	20.0
32	280	23.3*	4000	8.2	20.0
33	290	31.0	4000	8.3	20.3
34	300	47.9	4000	10.3	24.6
35	310	54.0	3909	10.9	26.0
36	315	52.1	3864	10.6	25.4
37	320	48.9	3820	10.3	24.6
38	330	42.9	3690	9.5	22.8
39	340	49.2	3524	10.1	24.2
40	350	51.9	3266	10.2	24.4

EHAAT: 44.7 m (based upon 8 standard radials)

(*) an HAAT of 30 m value was considerate for calculation purposes

10 HIGH FIELD STRENGTH CONTOUR

The operation of the proposed station with a maximum ERP of 4000 W will cause high field contours at ground level. The calculations of the high field contours give a 100 dB μ V/m contour extending to a maximum of 2.15 km. The 115 dB μ V/m contour is extending to a maximum of 750 m.

Map 1, in appendix, shows the high field contours of the proposed station.

11 POPULATION ESTIMATES

According to our evaluation, the total population contained within the service contours is as follows:

Table 3 – Population Count for the proposed station CHXU-FM

Field Strength	English	French	Bilingual	Other	TOTAL	Dwelling
115 dB μ V/m	6 514	4	1 520	40	8 078	4 006
100 dB μ V/m	30 512	14	6 649	247	37 422	19 483
70 dB μ V/m (3.0 mV/m)	183 512	96	27 643	1 859	213 110	107 697
54 dB μ V/m (0.5 mV/m)	336 039	141	48 547	2 346	387 073	176 863

Table 3 – Population Count for VF3002

Field Strength	English	French	Bilingual	Other	TOTAL	Dwelling
70 dB μ V/m (3.0 mV/m)	71 024	18	13 738	585	85 365	47 311
54 dB μ V/m (0.5 mV/m)	203 501	106	30 391	1 909	235 907	116 767

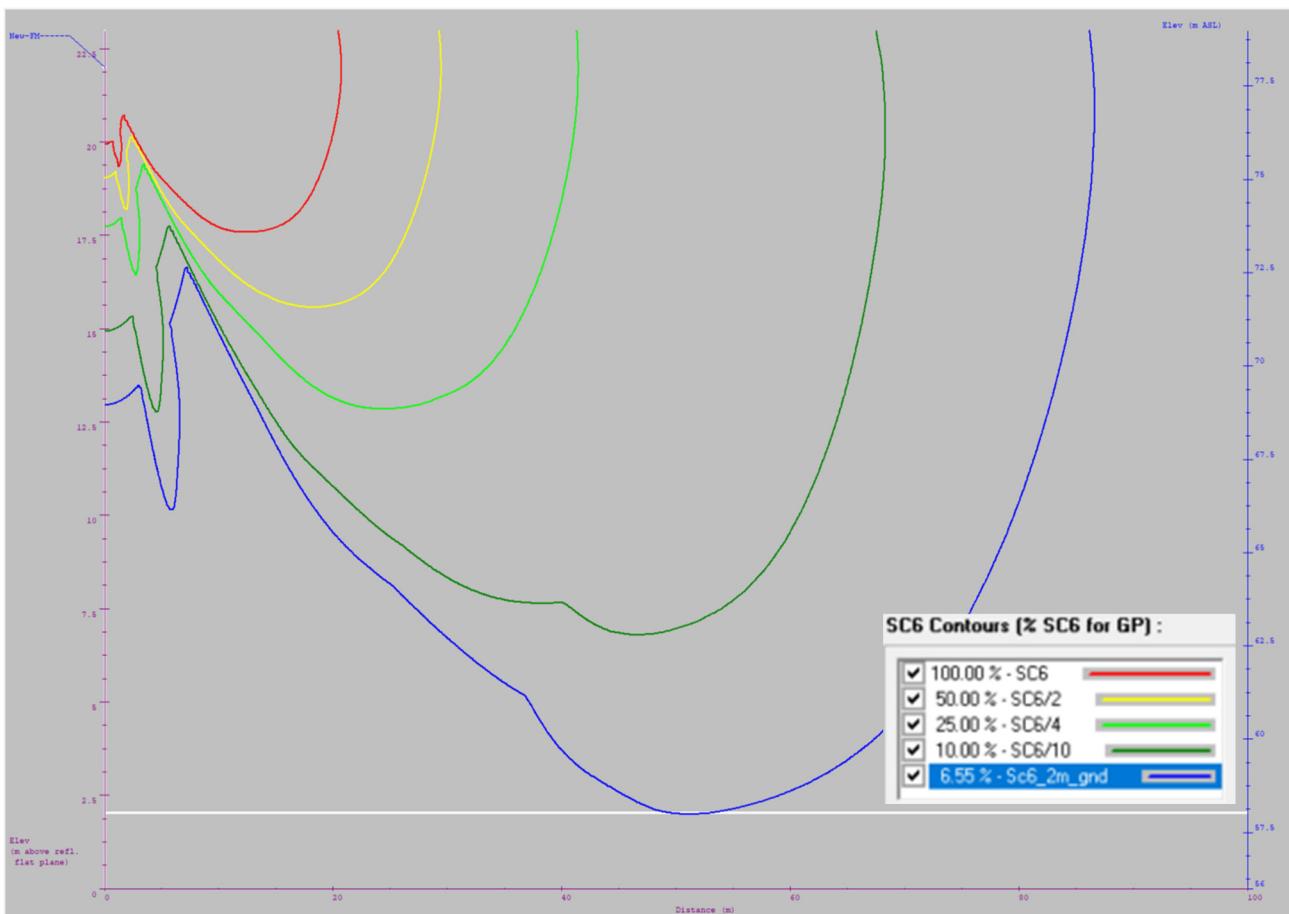
Source: Statistics Canada (Population Census 2021)

12 INTERFERENCE CAUSED TO LOW POWER AND VERY LOW POWER STATIONS

There are not low power stations in a short space situation to the proposed station; therefore, no analysis is necessary.

13 RF EXPOSURE ANALYSIS

A study was undertaken to predict radiation levels on the rooftop. The Hifield program version 5.6. from Industry Canada has been used to evaluate the RF energy exposure.


Nearby Stations List

44° 39' 02.0" N - 63° 35' 51.0" W

Broadcast Stations Listing (1 stations) :

Id	Type	Rec. Stat.	Call Sign	Ban.	City	Prov.	Chan.	Frequency (MHz)	Max ERP (W)	Ground Level (m AMSL)	Rad. Center (m AMSL)	Rad. Center (m AGL)	Dist. (m)	Bear. (deg)	
2	FM	ADD	CHXU-FM	PC	Halifax		NS	295	106.9	4,000.0	56.0	78.0	22.0	0.0	0.0

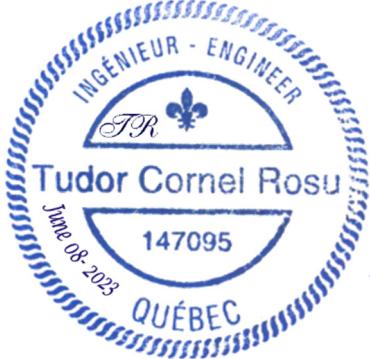
HiField – Safety Code 6 Report Vertical Plane at Azimuth 270deg (max)

The maximum value at 2m from the ground level is less than 7% of the uncontrolled environment Safety Code 6 limit.

14 BROADCASTER'S RESPONSIBILITIES

The broadcaster is aware of the responsibilities associated with operating such a station, and is aware that all appropriate corrective actions that may be required must be implemented at his own expense to allow normal operation of this FM station in accordance with the requirements of the Radio Legislation.

Since potential high field problems exist related to receivers of poor quality, the broadcaster is completely aware of the commitment made by him to Industry Canada.


15 EXPIRATION DATE

Should this technical brief not be submitted to Industry Canada in the three (3) months following the date of its preparation, a revision by the engineer responsible for its preparation will be required.

16 QUALIFICATION AND SIGNATURE

The consulting engineer responsible for the preparation of this technical brief is a member of the *l'Ordre des Ingénieurs du Québec* and the *Canadian Association of Broadcast Consultants*.

Prepared by:

Tudor Rosu, Eng.
(OIQ #147095 – 08-06-2023)
YRH Inc.

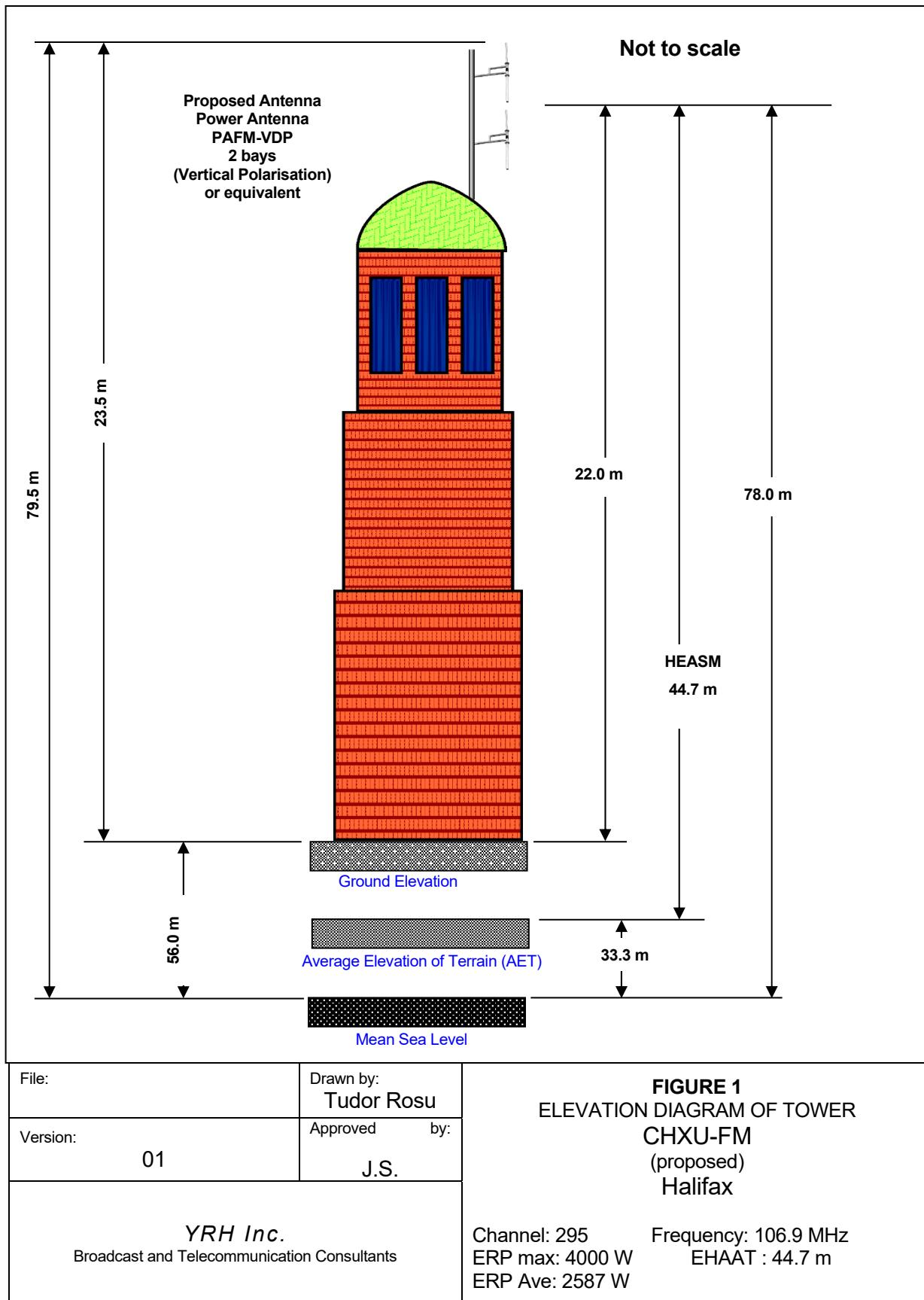


Figure 2 - Terrain Profiles 1 and 2

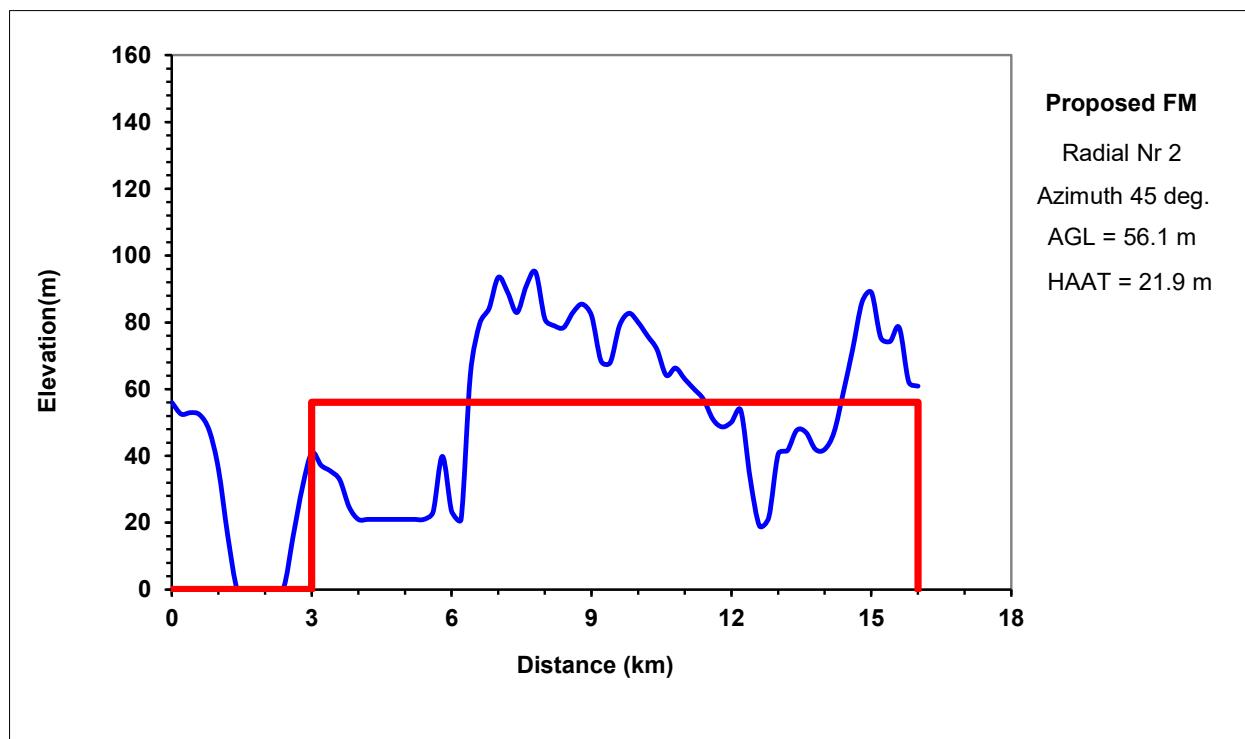
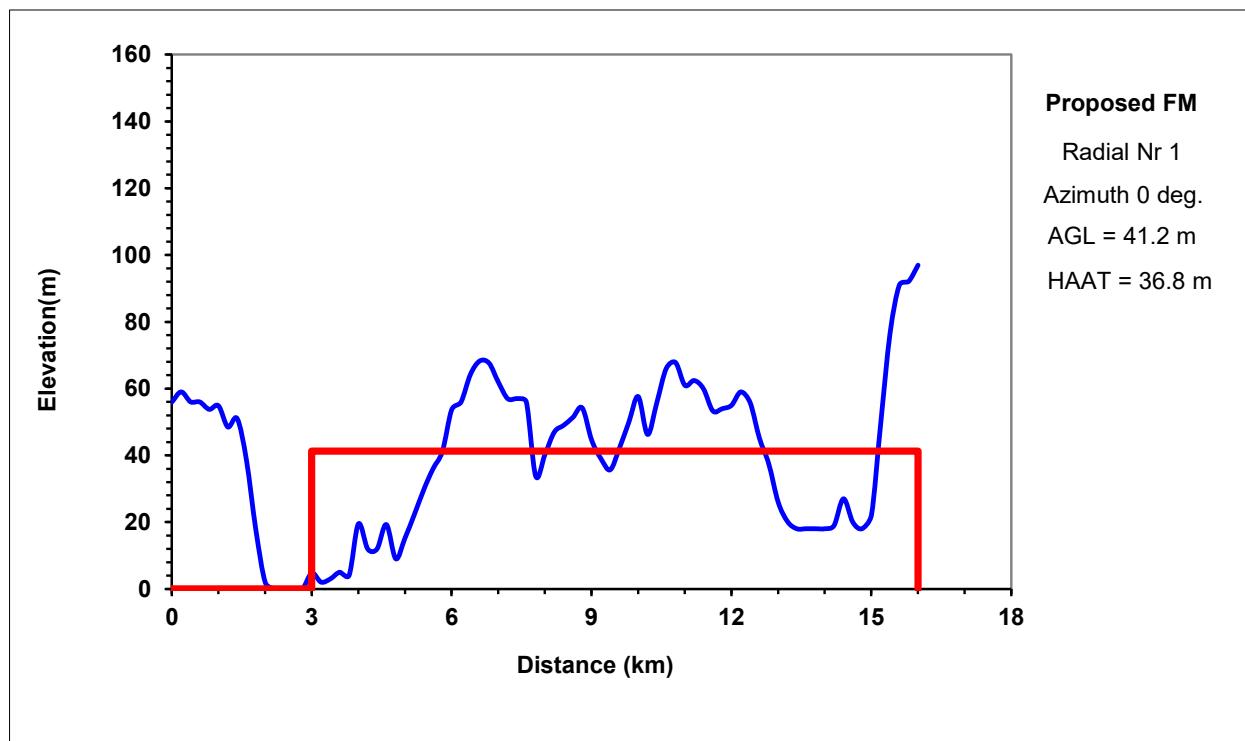



Figure 3 - Terrain Profiles 3 and 4

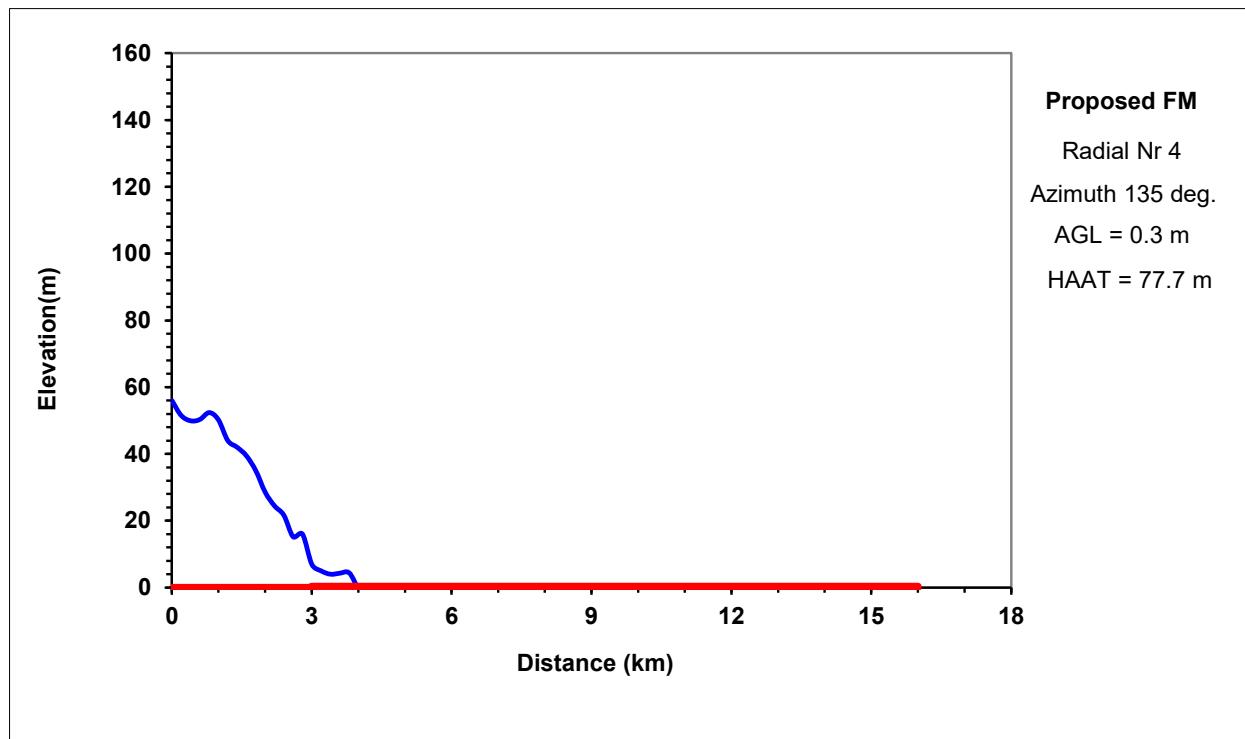
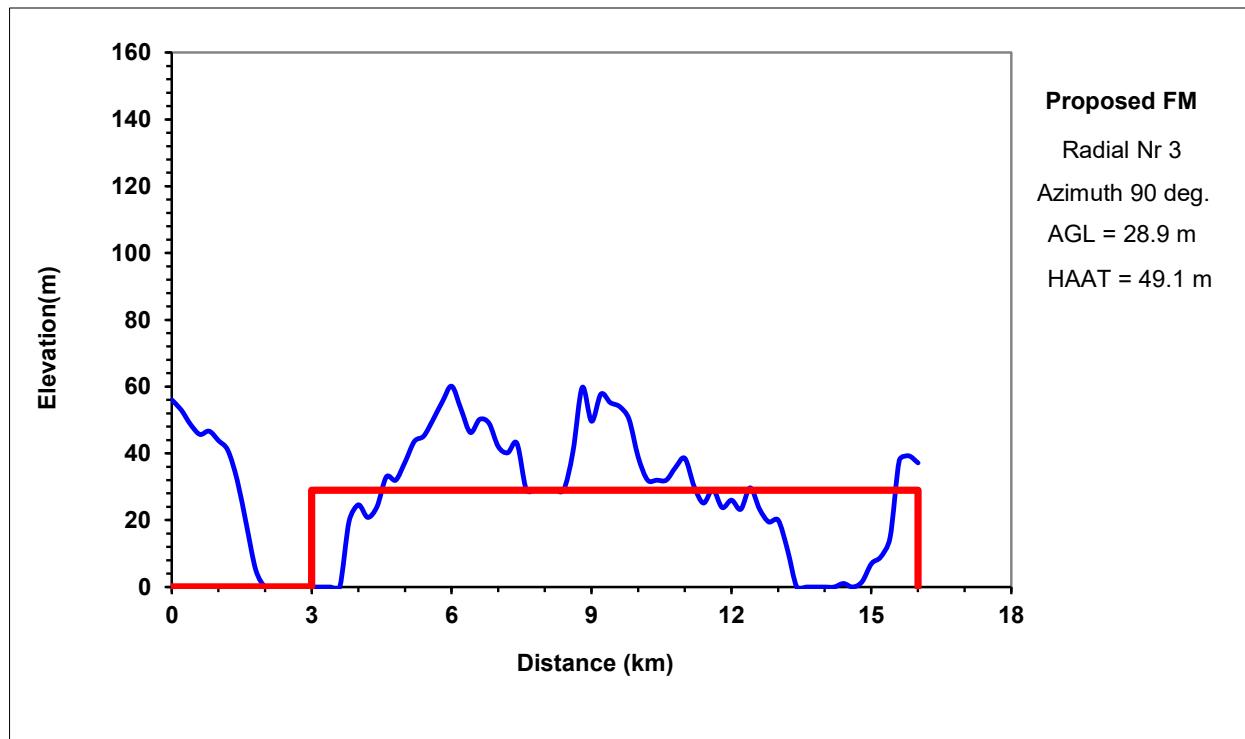



Figure 4 - Terrain Profiles 5 and 6

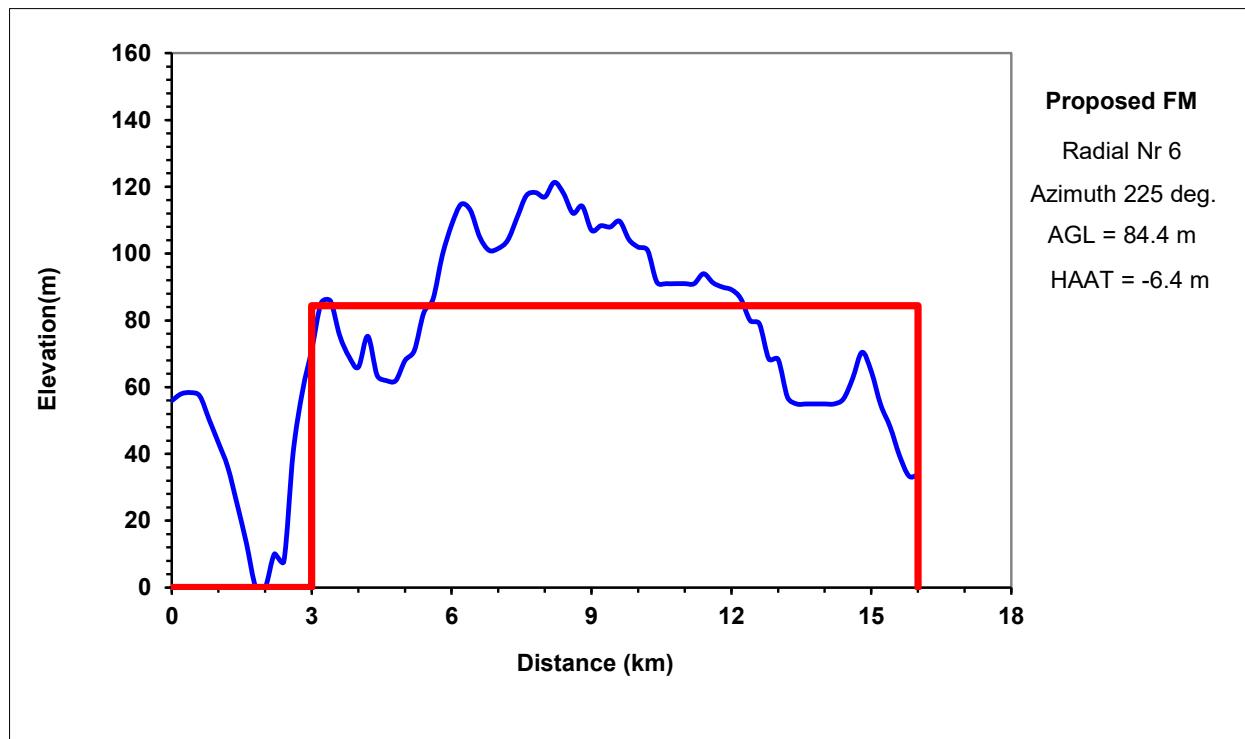
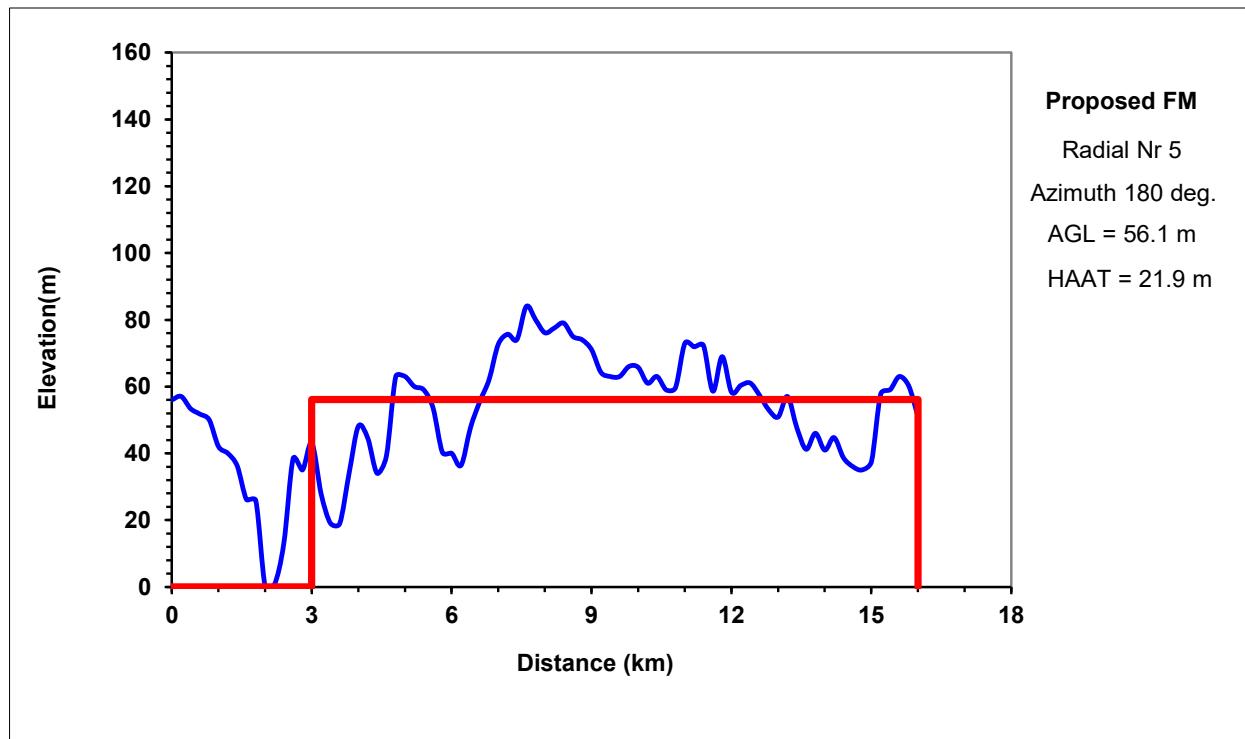
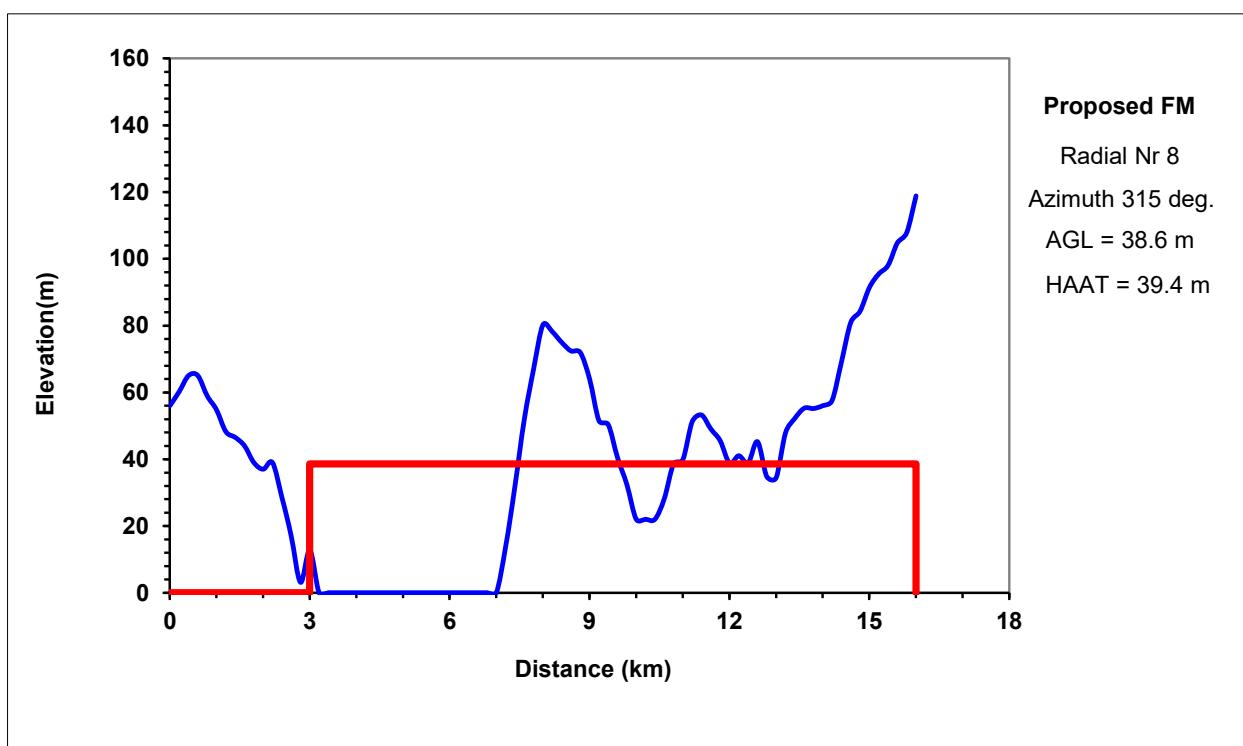
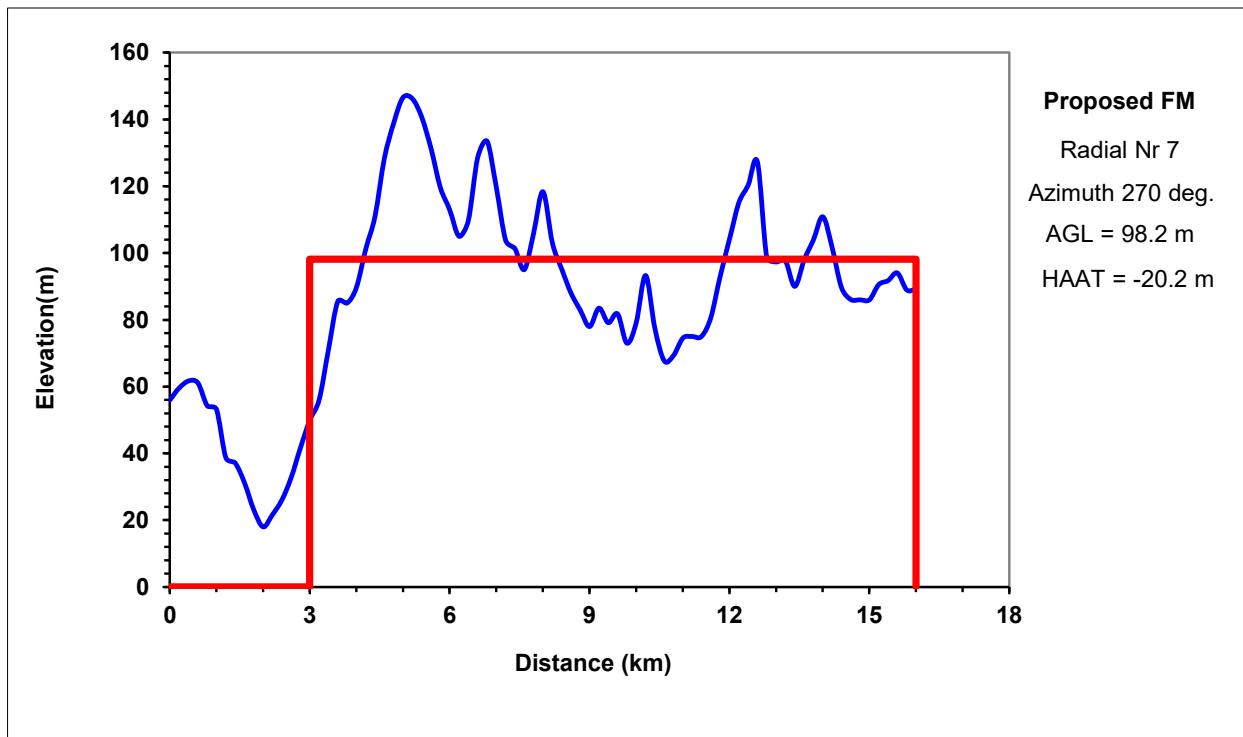
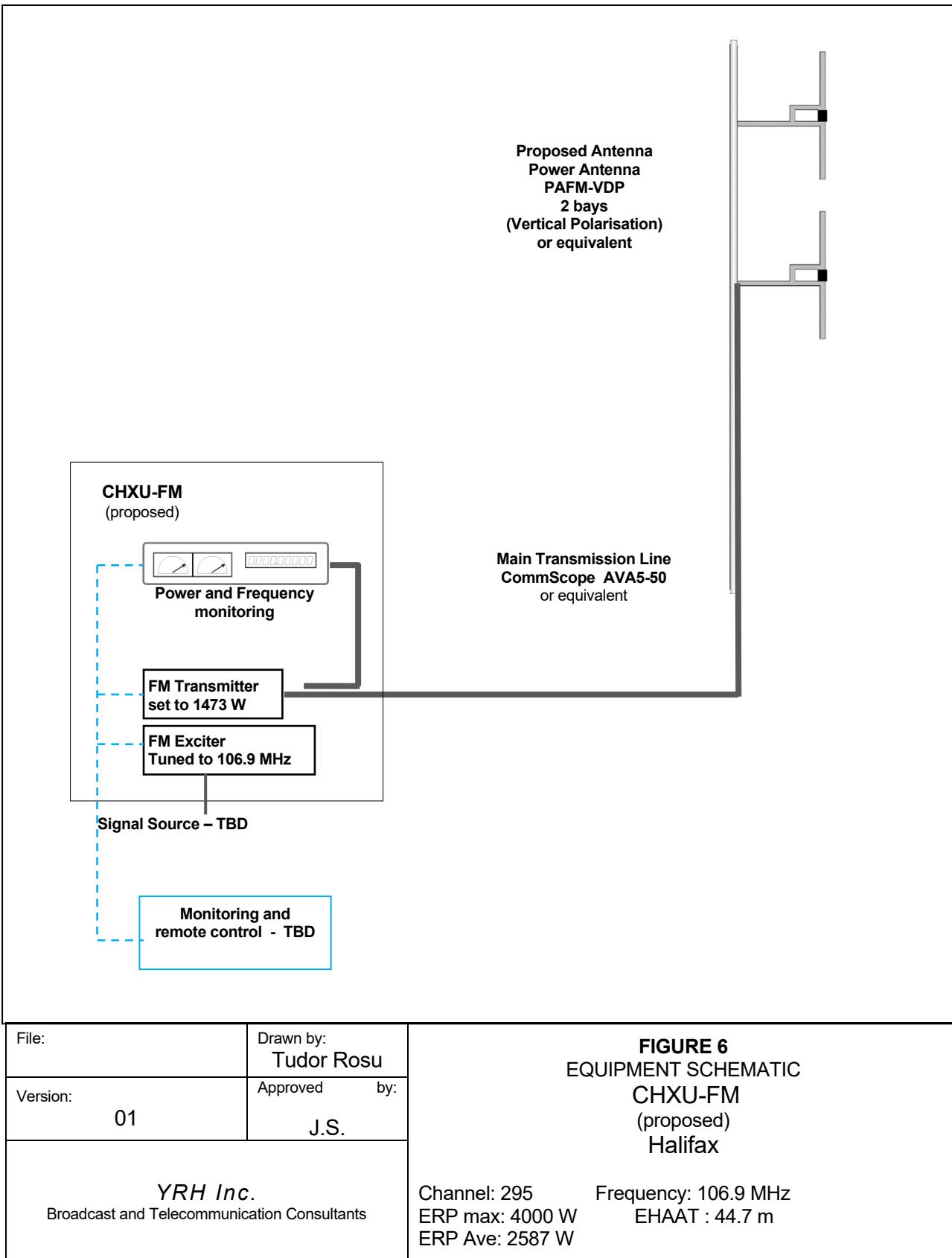
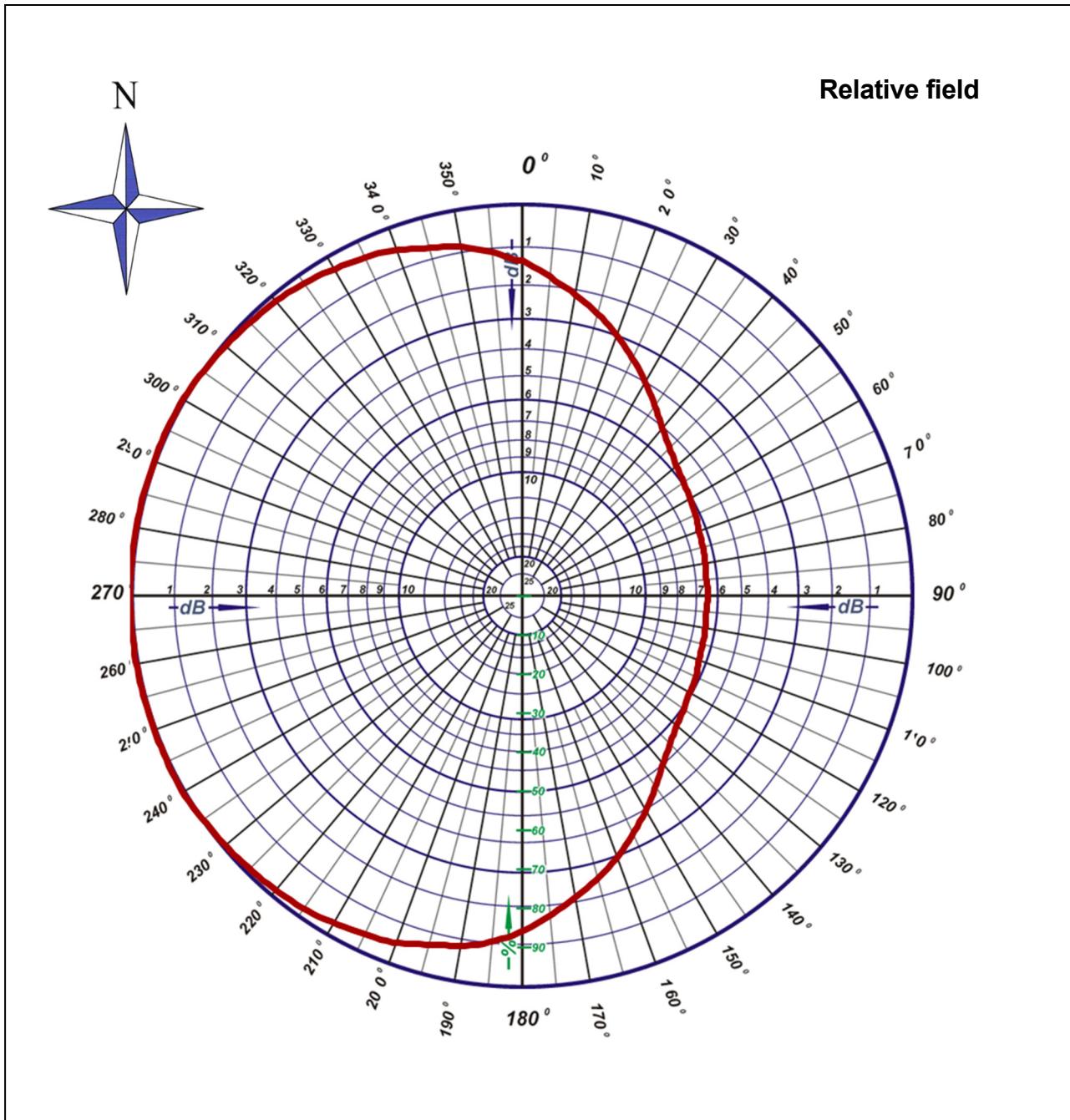
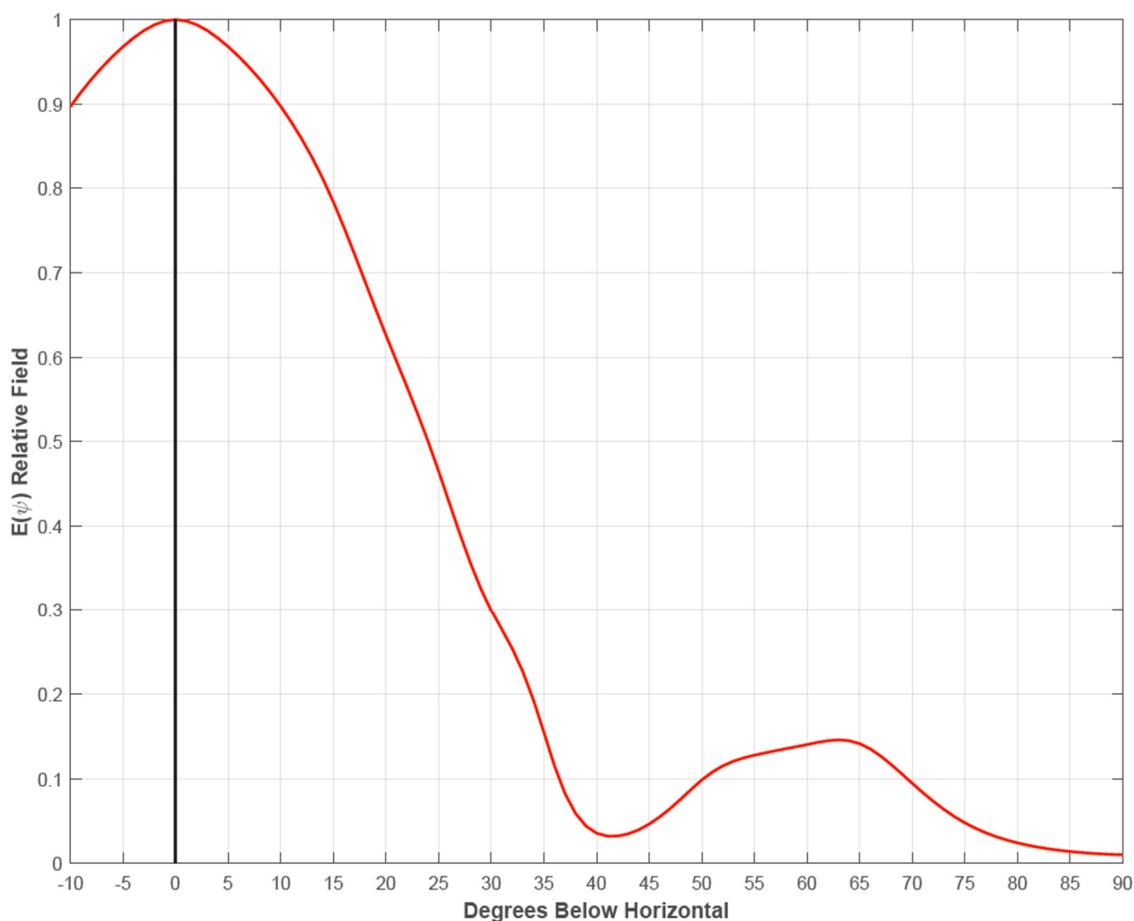







Figure 5 - Terrain Profiles 7 and 8



File:	Drawn by: Tudor Rosu
Version: 01	Approved by: J.S.
YRH Inc. Broadcast and Telecommunication Consultants	

FIGURE N° 7
HORIZONTAL RADIATION PATTERN
 (V polarisation)
CHXU-FM
 (proposed)
 Halifax

Channel: 295 Frequency: 106.9 MHz
 ERP max: 4000 W EHAAT : 44.7 m
 ERP Ave: 2587 W

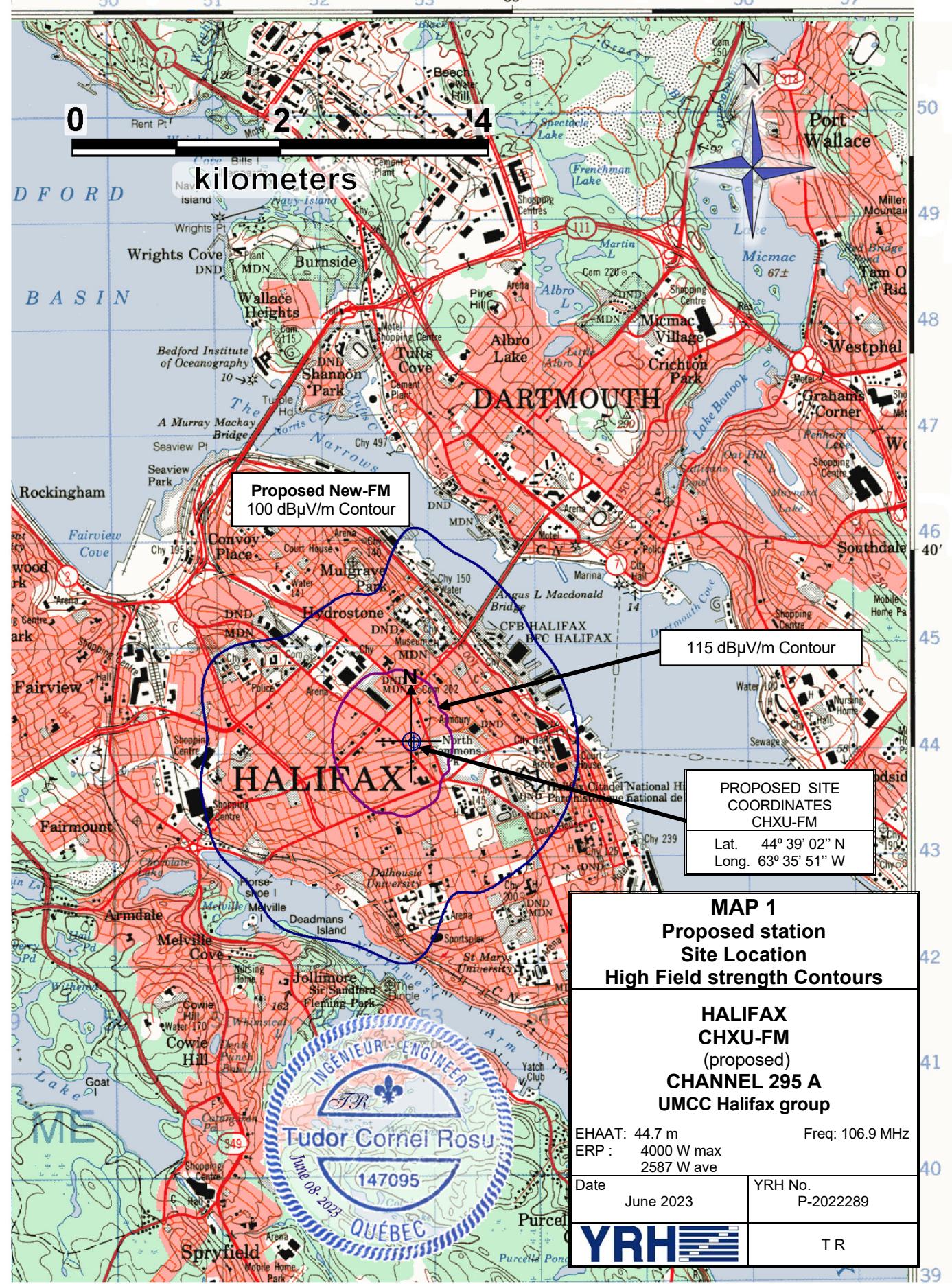
Relative field

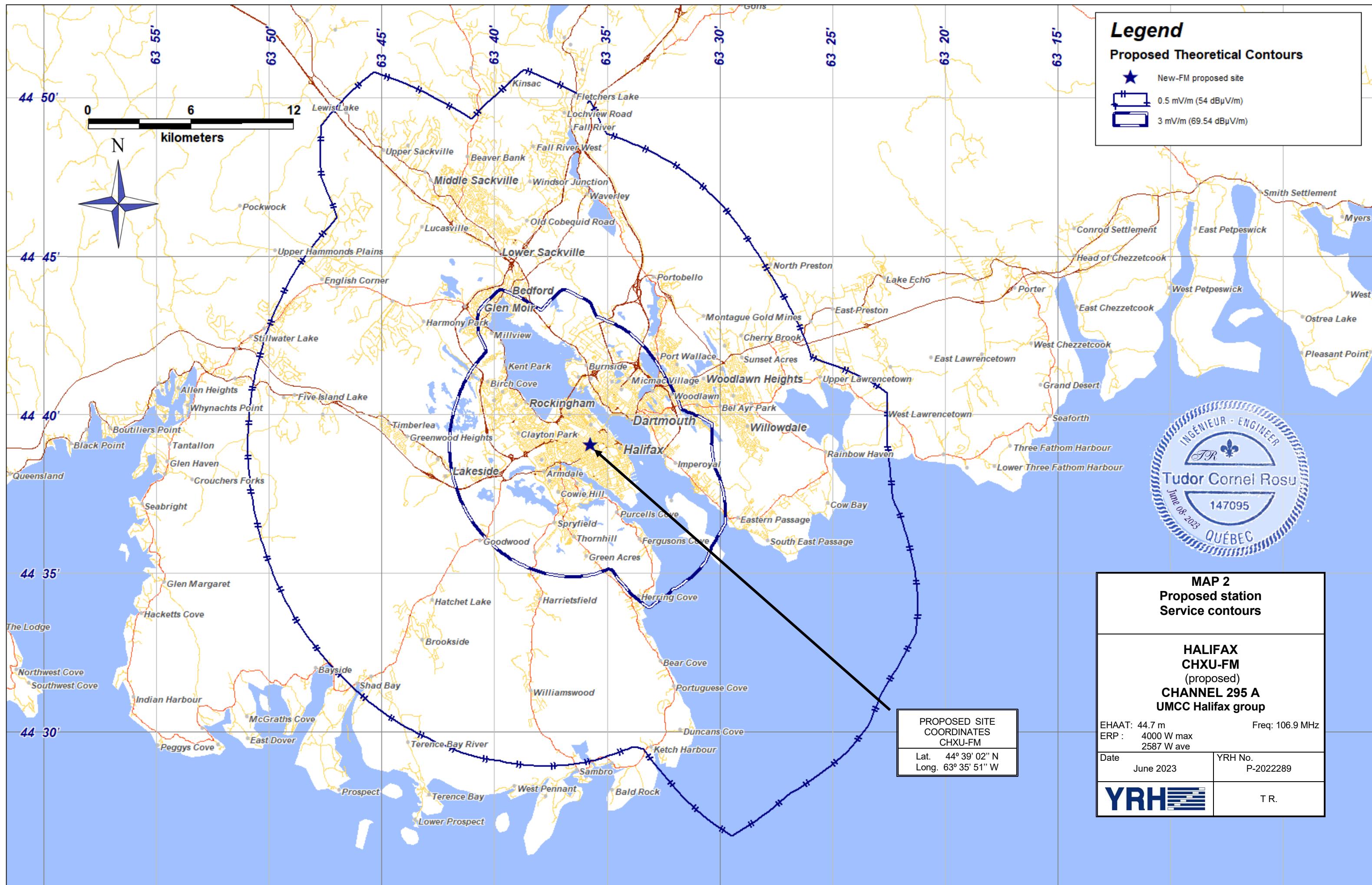
File:	Drawn by: Tudor Rosu
Version: 01	Approved by: J.S.
YRH Inc. Broadcast and Telecommunication Consultants	

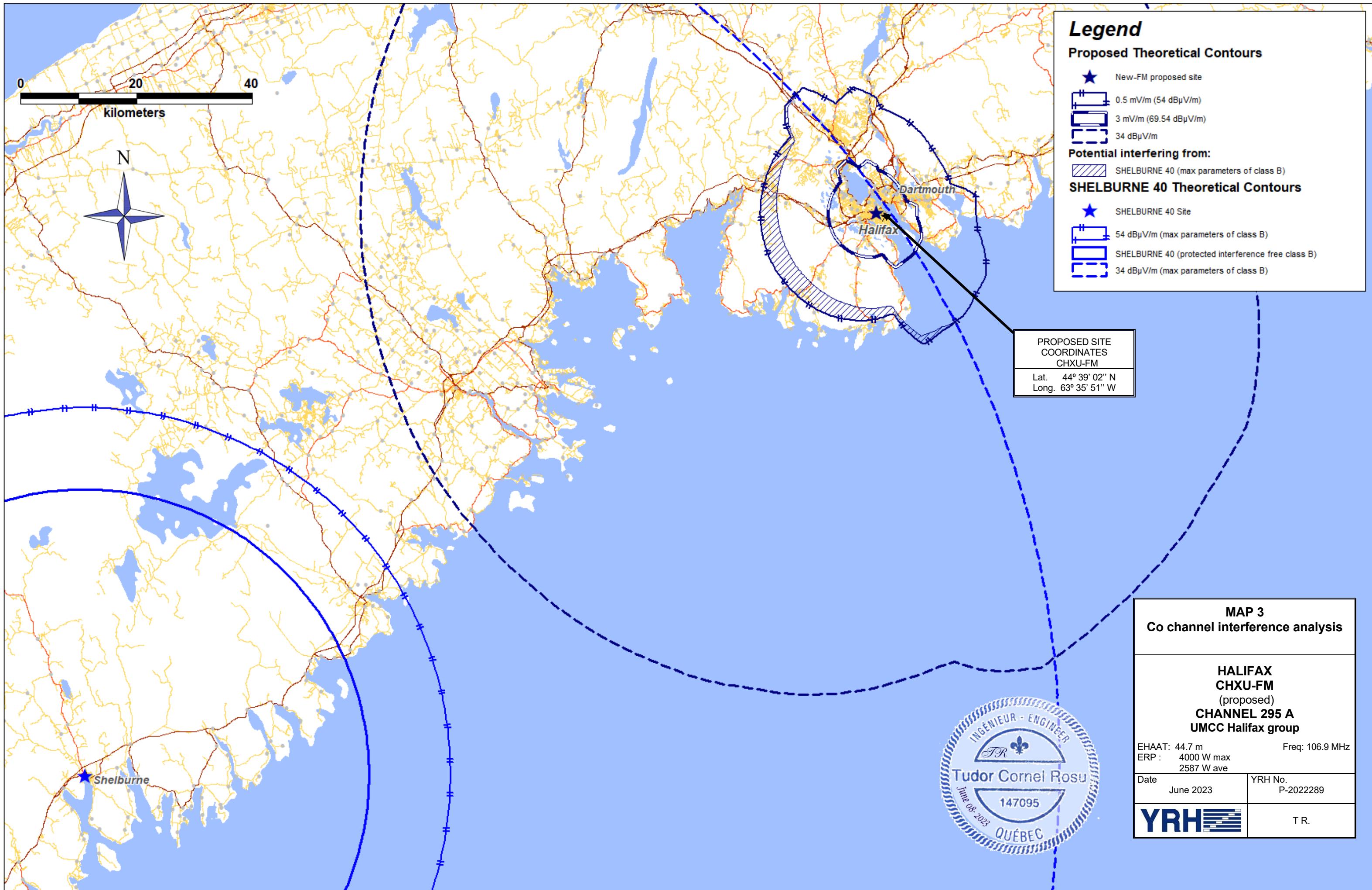
FIGURE N° 8
VERTICAL RADIATION PATTERN
 (V polarisation)
CHXU-FM
 (proposed)
 Halifax

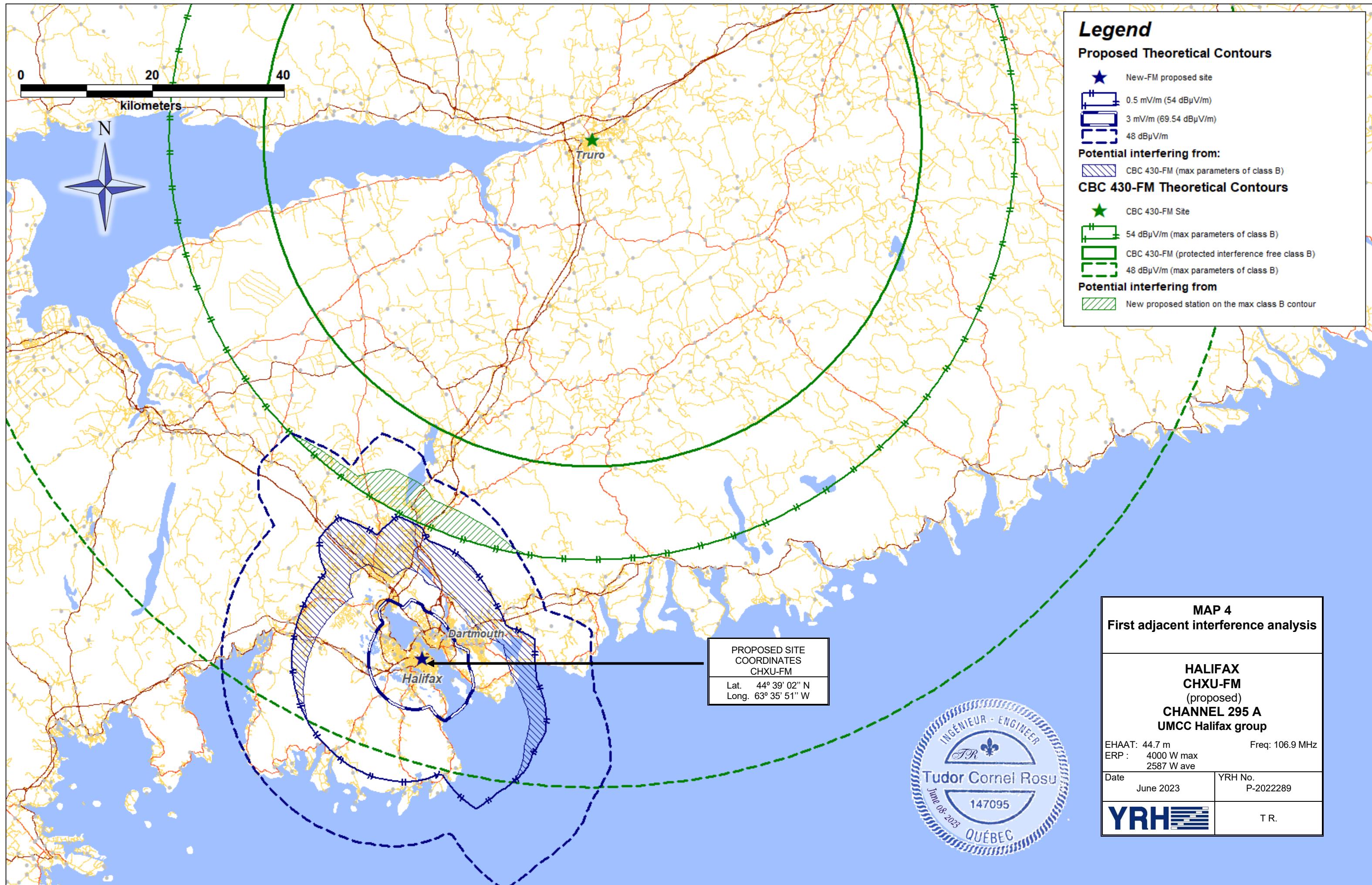
Channel: 295 Frequency: 106.9 MHz
 ERP max: 4000 W EHAAT : 44.7 m
 ERP Ave: 2587 W

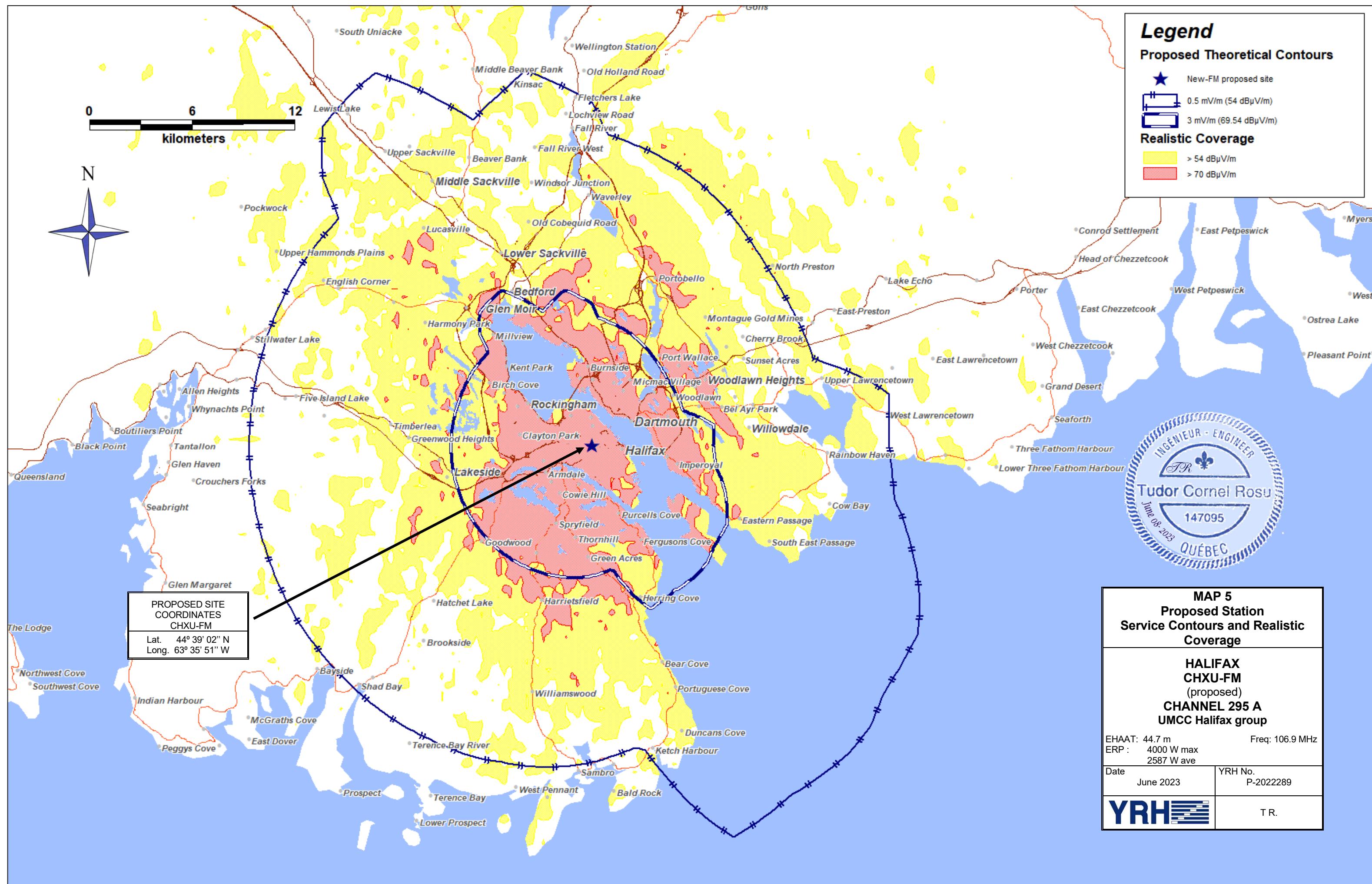
Table 5 – Tabulated Values


Horizontal Pattern


Azimuth (°)	Field (relative)	Azimuth (°)	Field (relative)
0	0.851	180	0.851
5	0.813	185	0.881
10	0.776	190	0.904
15	0.741	195	0.917
20	0.704	200	0.939
25	0.665	205	0.950
30	0.627	210	0.961
35	0.589	215	0.972
40	0.556	220	0.977
45	0.531	225	0.983
50	0.513	230	0.989
55	0.501	235	0.994
60	0.493	240	1.000
65	0.487	245	1.000
70	0.479	250	1.000
75	0.476	255	1.000
80	0.473	260	1.000
85	0.470	265	1.000
90	0.473	270	1.000
95	0.470	275	1.000
100	0.473	280	1.000
105	0.476	285	1.000
110	0.479	290	1.000
115	0.487	295	1.000
120	0.493	300	1.000
125	0.501	305	0.994
130	0.513	310	0.989
135	0.531	315	0.983
140	0.556	320	0.977
145	0.589	325	0.972
150	0.627	330	0.961
155	0.665	335	0.950
160	0.704	340	0.939
165	1.000	345	0.917
170	0.776	350	0.904
175	0.813	355	0.881


Table 6 – Tabulated Values


Vertical Pattern


Azimuth (°)	Field (relative)	Azimuth (°)	Field (relative)	Azimuth (°)	Field (relative)
0	1.000	24	0.500	58	0.135
0.5	0.999	25	0.465	59	0.138
1	0.998	26	0.428	60	0.140
1.5	0.996	27	0.391	61	0.143
2	0.994	28	0.356	62	0.145
2.5	0.991	29	0.326	63	0.146
3	0.987	30	0.299	64	0.145
3.5	0.983	31	0.276	65	0.141
4	0.978	32	0.253	66	0.135
4.5	0.973	33	0.226	67	0.127
5	0.968	34	0.193	68	0.116
5.5	0.962	35	0.154	69	0.106
6	0.956	36	0.115	70	0.094
6.5	0.950	37	0.082	71	0.083
7	0.943	38	0.059	72	0.073
7.5	0.936	39	0.044	73	0.064
8	0.929	40	0.036	74	0.055
8.5	0.922	41	0.032	75	0.048
9	0.914	42	0.032	76	0.041
9.5	0.905	43	0.035	77	0.036
10	0.897	44	0.040	78	0.031
11	0.878	45	0.046	79	0.027
12	0.858	46	0.055	80	0.024
13	0.836	47	0.065	81	0.021
14	0.811	48	0.076	82	0.019
15	0.784	49	0.087	83	0.017
16	0.754	50	0.098	84	0.015
17	0.722	51	0.108	85	0.014
18	0.690	52	0.115	86	0.013
19	0.657	53	0.120	87	0.012
20	0.626	54	0.124	88	0.011
21	0.595	55	0.128	89	0.010
22	0.564	56	0.130	90	0.010
23	0.533	57	0.133		

ISED CANADA FORMS

Industry
Canada Industrie
Canada

APPLICATION FOR A BROADCASTING CERTIFICATE FOR A REGULAR POWER UNDERTAKING

INSTRUCTIONS

- (a) This form is to be used, pursuant to the *Radiocommunication Act* and regulations made thereunder, in applying for a broadcasting certificate for a radio apparatus that forms part of a new broadcasting undertaking or modification to an existing broadcasting undertaking.
- (b) A completed application form and required documentation may be filed electronically in pdf format to ic.broadcasting-radiodiffusion.ic@canada.ca. The completed application form and documentation may be filed by mail to the Director, Broadcast, Coordination and Planning, Innovation, Science and Economic Development Canada, 235 Queen Street, Ottawa, Ontario, K1A 0H5. If required, an application should also be filed with the Canadian Radio-Television and Telecommunications Commission (CRTC).
- (c) If the submission is found to be missing information, incomplete or incorrect, the applicant and/or agent will be so notified and the CRTC will be advised accordingly. If the necessary information is not supplied within a period of time specified by the Department, the application will be considered closed.
- (d) Applicants who choose to retain an agent must complete the section *Notice of retention of an agent*.
- (e) The Agent is responsible for ensuring that all documents submitted with respect to this application have the necessary signatures in accordance with the *Broadcasting Procedures and Rules*.
- (f) The applicant is required to submit a completed *Radiocommunication and Broadcasting Antenna Systems Attestation* (IC-2430) and, if applicable, a copy of the Letter of Intent to the CRTC regarding their commitment to conduct any required consultations after receiving CRTC approval (refer to BPR-1 Part 1: General Rules).

APPLICANT INFORMATION

Name of Applicant UMCC Halifax group		Telephone Number (902) 407-1411
Street Address 2510 St Matthias St		Email Address info@umcc.ca
City Halifax		Province Nova Scotia
Contact Name Emam Abdallah Yousri or David Bannerman (TA.)		Postal Code B3L 0A9
Title Technical Assistant & Representative		
Telephone Number (902) 253-2048	Facsimile Number (514) 368-0565	Email Address david@mediavoice.ca
Language of Correspondence <input checked="" type="radio"/> English <input type="radio"/> French		Account Number (if applicable)

NOTICE OF RETENTION OF AN AGENT

- The following person has been retained as my agent to prepare the necessary documentation for this application.
- The following person has been retained as my agent to certify for this application that the installation of the facilities is in accordance with the technical requirements of Innovation, Science and Economic Development Canada.
- The following person has been retained as my agent to correspond with the Department on my behalf for all matters relating to this application.

Name Tudor Rosu, engineer		Company Name Yves R. Hamel et Associés inc. (YRH)
Street Address 424 Guy, suite 102		City Montreal
Province Quebec		Postal Code H3J 1S6
Telephone Number (514) 934-3024	Facsimile Number (514) 934-2245	Email Address trosu@yrh.com
Language of Correspondence <input checked="" type="radio"/> English <input type="radio"/> French		Effective Date of Retention (YYYY-MM-DD) 2022-11-08

SERVICE

Specify which type of undertaking this application refers to:

<input type="radio"/> AM	<input type="radio"/> TV	<input type="radio"/> Multipoint Distribution System (MDS)
<input checked="" type="radio"/> FM	<input type="radio"/> Digital Television (DTV)	<input type="radio"/> Satellite Digital Audio Radio Service (SDARS)

Specify if this application is for a new undertaking or a modification to an existing undertaking:

<input checked="" type="radio"/> NEW
<input type="radio"/> MODIFICATION

a. This application is for a new undertaking for:

regular term
 developmental service

Please provide the start and end dates

Start Date (YYYY-MM-DD)

End Date (YYYY-MM-DD)

Temporary operation

b. Desired call-sign CHUX-FM

c. Service objective:

Principal City Halifax

Province Nova Scotia

d. Is a CRTC licence required?

YES - Note that if no CRTC application is received within 30 days, the technical application will be returned to the applicant.
 This does not apply to terrestrial SDARS or to applications meeting CRTC exemption criteria.

NO - CRTC exemption number _____

ATTACHMENTS

The following documents have been attached to this application.

Engineering brief
 Contour coverage maps
 Electronic contours
 Vertical and horizontal antenna radiation patterns in graphical and tabulated format.
 IC-2430: Radiocommunication and Broadcasting Antenna Systems Attestation
 Copy of the Letter of Intent regarding antenna system
 Other (please specify) _____

CERTIFICATION

I certify that the statements made in this application and related documentation are complete and correct to the best of my knowledge, that the radio equipment used is type approved or technically acceptable for use in Canada and that the station will be used only for the purposes authorized by the Minister of Innovation, Science and Economic Development and the Regulations made under the *Radiocommunication Act*.

I understand that Industry Canada reserves the right to ask for additional information.

 Abdallah Yousri

Name

 Roger

Applicant's Signature

2023-03-08

Date (YYYY-MM-DD)

RADIOCOMMUNICATION AND BROADCASTING ANTENNA SYSTEMS ATTESTATION

I acknowledge my responsibility to comply with Innovation, Science and Economic Development Canada's (ISED) Client Procedures Circular CPC-2-0-03, *Radiocommunication and Broadcasting Antenna Systems*, current issue (www.ic.gc.ca/antenna).

1. Use of Existing Infrastructure (Sharing)

I am proposing to share an existing mast, tower or other antenna supporting structure.
If I have selected 'No', I am attaching a detailed explanation of why sharing is not possible.

Yes No

2. Exclusion from Public and Land-Use Consultation

My proposed antenna system is explicitly excluded from public and land-use authority consultation either under ISED's CPC-2-0-03 exclusion criteria or under the land-use authority's local process.
If 'Yes', proceed to #5 below.

Yes No

3. Land-Use Authority Consultation

I consulted with the land-use authority.
I have successfully completed my land-use authority consultation responsibilities in compliance with the requirements set out in CPC-2-0-03.

Yes No

Yes No

4. Public Consultation

I consulted with the local public.
If 'Yes' either by:

following the local land-use authority's established and documented public consultation process for the siting of antenna systems; or
 following ISED's Default Public Consultation process set out in CPC-2-0-03.

I have successfully completed my public consultation responsibilities in compliance with the requirements set out in CPC-2-0-03.

Yes No

If I have selected 'No' in any of the boxes in questions 3 or 4 above, I am attaching a written explanation supporting why I have: (i) not consulted and/or, (ii) was unable to successfully complete consultation.

5. General Requirements

I meet **all** of the general requirements described in Section 7 of CPC-2-0-03, *Radiocommunication and Broadcasting Antenna Systems*, current issue and understand that certain responsibilities are ongoing.
If 'No', I am providing details.

Yes No

6. Aboriginal Land and/or Land Claim

My proposed radio apparatus could impact upon a claim involving Aboriginal rights, treaty rights or title to Crown land.
If 'Yes', or if additional information is required, contact the local ISED office for guidance on consultation requirements. Office locations can be found on the Department's website (www.ic.gc.ca/epic/site/smt-gst/nsf/en/sf01742e.html).

Yes No

I understand that if I have not successfully concluded both land-use authority and public consultation, unless specifically excluded from this requirement, I must not proceed with the proposed installation and may petition ISED to initiate its Dispute Resolution Process as set out in CPC-2-0-03.

Proponent's Signature

2023-03-08

Date (YYYY-MM-DD)